Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract. Galactic cosmic rays (GCRs) interact with matter in the atmosphere and at the surface of the Earth to produce a range of cosmogenic nuclides. Measurements of cosmogenic nuclides produced in surface rocks have been used to study past land ice extent as well as to estimate erosion rates. Because the GCR flux reaching the Earth is modulated by magnetic fields (solar and Earth's), records of cosmogenic nuclides produced in the atmosphere have also been used for studies of past solar activity. Studies utilizing cosmogenic nuclides assume that the GCR flux is constant in time, but this assumption may be uncertain by 30 % or more. Here we propose that measurements of 14C of carbon monoxide (14CO) in ice cores at low-accumulation sites can be used as a proxy for variations in GCR flux on timescales of several thousand years. At low-accumulation ice core sites, 14CO in ice below the firn zone originates almost entirely from in situ cosmogenic production by deep-penetrating secondary cosmic ray muons. The flux of such muons is almost insensitive to solar and geomagnetic variations and depends only on the primary GCR flux intensity. We use an empirically constrained model of in situ cosmogenic 14CO production in ice in combination with a statistical analysis to explore the sensitivity of ice core 14CO measurements at Dome C, Antarctica, to variations in the GCR flux over the past ≈ 7000 years. We find that Dome C 14CO measurements would be able to detect a linear change of 6 % over 7 ka, a step increase of 6 % at 3.5 ka or a transient 100-year spike of 190 % at 3.5 ka at the 3σ significance level. The ice core 14CO proxy therefore appears promising for the purpose of providing a high-precision test of the assumption of GCR flux constancy over the Holocene.more » « less
-
Hyperspectral imaging (HSI) technology has been increasingly used in Earth and planetary sciences. This imaging technique has been successfully tested on ice cores using VNIR (visible and near-infrared, 380-1000 nm) (Garzonio et al., 2018) and near-infrared (900 - 1700 nm) (McDowell et al, 2023) line-scan cameras. Results show that HSI data greatly expand ice core line-scan imaging capabilities, previously used with gray or RGB cameras (see summary in Dey et al., 2023). Combinations of selected HSI bands from the hyperspectral data cube improve feature detection in ice core stratigraphy, and map distribution of volcanic material, dust, air bubbles, fractures, and ice crystals in ice cores. Captured spectral information provides unique fingerprints for specific materials present in ice cores. This method helps to guide ice core sampling because it provides non-destructive, rapid visualization of microstructural properties, layering, bubble contents, increases in dust, or presence of tephra material. Precise identification of these atmospheric components is important for understanding past climate drivers reconstructed from ice cores. As part of the COLDEX project (Brook et al., this meeting) we adapted the SPECIM SisuSCS HSI system for ice core imaging. The ice core scanning system is housed inside the ca. -20ºC main NSF ICF freezer, and externally computer-controlled. The operator monitors scanning operations and communicates with personnel inside of the freezer via radio. The system is equipped with a SPECIM FX10 camera that measures up to 224 bands in the VNIR range. We modified the ice core holder tray and installed a heated enclosure for the camera. The system uses SCHOTT DCR III Fiber Optic light sources with an OSL2BIR bulb from Thorlabs. IR filters are removed to extend the light spectral range beyond the 700 nm limit without heating the ice core surface during rapid (<5 minutes) scanning of an entire meter-long section. Emitted light enters ice at a 45º angle from two top and two bottom light sources. To calibrate absolute reflectance we use three Spectralon panels with 100, 50 and 20% reflectance values with every scan as well as several secondary reflective standards and USAF targets for geometric corrections. We are developing Python-based open source data processing routines and currently comparing HSI data with existing ice core physical and chemical measurements. The goal is to fully integrate the ice core HSI system with ice core processing at the NSF ICF. Dey et al., 2023. Application of Visual Stratigraphy from Line-Scan Images to Constrain Chronology and Melt Features of a Firn Core from Coastal Antarctica. Journal of Glaciology 69(273): 179–90. https://doi.org/10.1017/jog.2022.59.Garzonio et al., 2018. A Novel Hyperspectral System for High Resolution Imaging of Ice Cores: Application to Light-Absorbing Impurities and Ice Structure. Cold Regions Science and Technology 155: 47–57. https://doi.org/10.1016/j.coldregions.2018.07.005.McDowell et al., 2023. A Cold Laboratory Hyperspectral Imaging System to Map Grain Size and Ice Layer Distributions in Firn Cores. Preprint. Ice sheets/Instrumentation. https://doi.org/10.5194/egusphere-2023-2351.more » « less
-
The last glacial period was punctuated by cold intervals in the North Atlantic region that culminated in extensive iceberg discharge events. These cold intervals, known as Heinrich Stadials, are associated with abrupt climate shifts worldwide. Here, we present CO2measurements from the West Antarctic Ice Sheet Divide ice core across Heinrich Stadials 2 to 5 at decadal-scale resolution. Our results reveal multi-decadal-scale jumps in atmospheric CO2concentrations within each Heinrich Stadial. The largest magnitude of change (14.0 ± 0.8 ppm within 55 ± 10 y) occurred during Heinrich Stadial 4. Abrupt rises in atmospheric CO2are concurrent with jumps in atmospheric CH4and abrupt changes in the water isotopologs in multiple Antarctic ice cores, the latter of which suggest rapid warming of both Antarctica and Southern Ocean vapor source regions. The synchroneity of these rapid shifts points to wind-driven upwelling of relatively warm, carbon-rich waters in the Southern Ocean, likely linked to a poleward intensification of the Southern Hemisphere westerly winds. Using an isotope-enabled atmospheric circulation model, we show that observed changes in Antarctic water isotopologs can be explained by abrupt and widespread Southern Ocean warming. Our work presents evidence for a multi-decadal- to century-scale response of the Southern Ocean to changes in atmospheric circulation, demonstrating the potential for dynamic changes in Southern Ocean biogeochemistry and circulation on human timescales. Furthermore, it suggests that anthropogenic CO2uptake in the Southern Ocean may weaken with poleward strengthening westerlies today and into the future.more » « less
-
Abstract. During the Last Glacial Period (LGP), Greenland experienced approximately 30 abrupt warming phases, known as Dansgaard–Oeschger (D–O) events, followed by cooling back to baseline glacial conditions. Studies of mean climate change across warming transitions reveal indistinguishable phase offsets between shifts in temperature, dust, sea salt, accumulation, and moisture source, thus preventing a comprehensive understanding of the “anatomy” of D–O cycles (Capron et al., 2021). One aspect of abrupt change that has not been systematically assessed is how high-frequency interannual-scale climatic variability surrounding centennial-scale mean temperature changes across D–O transitions. Here, we utilize the East Greenland Ice-core Project (EGRIP) high-resolution water isotope record, a proxy for temperature and atmospheric circulation, to quantify the amplitude of 7–15-year isotopic variability for D–O events 2–13, the Younger Dryas, and the Bølling–Allerød. On average, cold stadial periods consistently exhibit greater variability than warm interstadial periods. Most notably, we often find that reductions in the amplitude of the 7–15-year band led abrupt D–O warmings by hundreds of years. Such a large phase offset between two climate parameters in a Greenland ice core has never been documented for D–O cycles. However, similar centennial lead times have been found in proxies for Norwegian Sea ice cover relative to abrupt Greenland warming (Sadatzki et al., 2020). Using HadCM3, a fully coupled general circulation model, we assess the effects of sea ice on 7–15-year temperature variability at the EGRIP. For a range of stadial and interstadial conditions, we find a strong relationship in line with our observations between colder simulated mean temperature and enhanced temperature variability at the EGRIP location. We also find a robust correlation between year-to-year North Atlantic sea ice fluctuations and the strength of interannual-scale temperature variability at EGRIP. Together, paleoclimate proxy evidence and model simulations suggest that sea ice plays a substantial role in high-frequency climate variability prior to D–O warming. This provides a clue about the anatomy of D–O events and should be the target of future sea ice model studies.more » « lessFree, publicly-accessible full text available February 24, 2026
-
We present new measurements of methane (CH4), nitrogen isotopes (d15N-N2), and total air content (TAC) from the North Greenland Eemian Ice Drilling (NEEM), North Greenland Ice Core Project (NGRIP), and Greenland Ice Sheet Project Two (GISP2) Greenland ice cores from the Last Glacial Maximum through the late Holocene (0 to ~18 thousand years before present [ka BP]). These records provide insight into spatial pattern of Greenland climate evolution across the deglaciation and the Holocene Thermal Maximum. The methane data allow for gas-phase synchronization of ice cores across Greenland and Antarctica, providing empirical delta age reconstructions. The nitrogen isotopic composition data allow for reconstruction of abrupt Greenland surface climate variations, which is provided for all 3 sites. Data are a combination of measurements conducted at Oregon State University, Scripps Institution of Oceanography, and the National Institute for Polar Research using previously established techniques.more » « less
-
We present high resolution measurements of atmospheric methane (CH4) and nitrogen isotopic composition (d15N-N2) in the Greenland Ice Sheet Project Two (GISP2) Ice core. The data span Marine Isotope Stage 3, 13 to 50 thousand years (ka) before present. These datasets enhance our understanding of abrupt climate variability during the last glacial period, with a focus on Heinrich events 1 through 5. CH4 data were analyzed between 2014 and 2020 via an established wet extraction technique (Mitchell et al. 2013). Concentrations were determined via gas chromatography measurements on an Agilent 6890N and calibrated to the NOAA04 scale. d15N-N2 data were measured between 2017 and 2020 on a Finnigan MAT Delta XP via an established technique (Petrenko et al. 2006). The methane data allow for gas-phase synchronization of the GISP2 ice core to other polar ice cores from Greenland and Antarctica. The nitrogen isotopic composition data allow for reconstruction of abrupt Greenland surface climate variations.more » « less
An official website of the United States government
